summaryrefslogtreecommitdiff
path: root/gnu/packages/machine-learning.scm
diff options
context:
space:
mode:
authorRicardo Wurmus <rekado@elephly.net>2025-01-22 15:26:57 +0100
committerRicardo Wurmus <rekado@elephly.net>2025-01-22 15:28:25 +0100
commitf8e9462982341d6a67af79b5d99e3163a8b11ce1 (patch)
treeceae8429f99da9a7ed1054ec2a0f50aabf4930ff /gnu/packages/machine-learning.scm
parentd53a56f7c75725c13c4470a93ecae65f3231d9ec (diff)
gnu: Add python-geomloss.
* gnu/packages/machine-learning.scm (python-geomloss): New variable. Change-Id: Id54d81c8c942c69151a7667983073a28419170d0
Diffstat (limited to 'gnu/packages/machine-learning.scm')
-rw-r--r--gnu/packages/machine-learning.scm31
1 files changed, 31 insertions, 0 deletions
diff --git a/gnu/packages/machine-learning.scm b/gnu/packages/machine-learning.scm
index cd39b34d83..cc7b746979 100644
--- a/gnu/packages/machine-learning.scm
+++ b/gnu/packages/machine-learning.scm
@@ -5530,6 +5530,37 @@ and common image transformations for computer vision.")
Python.")
(license license:bsd-3)))
+(define-public python-geomloss
+ (package
+ (name "python-geomloss")
+ (version "0.2.6")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (pypi-uri "geomloss" version))
+ (sha256
+ (base32 "1szsjpcwjlvqiiws120fwn581a6hs8gm9si8c75v40ahbh44f729"))))
+ (build-system pyproject-build-system)
+ ;; There are no automated tests.
+ (arguments (list #:tests? #false))
+ (propagated-inputs (list python-numpy python-pytorch))
+ (native-inputs (list python-setuptools python-wheel))
+ (home-page "https://www.kernel-operations.io/geomloss/")
+ (synopsis
+ "Geometric loss functions between point clouds, images and volumes")
+ (description
+ "The GeomLoss library provides efficient GPU implementations for:
+
+@itemize
+@item Kernel norms (also known as Maximum Mean Discrepancies).
+@item Hausdorff divergences, which are positive definite generalizations of
+the Chamfer-ICP loss and are analogous to log-likelihoods of Gaussian Mixture
+Models.
+@item Debiased Sinkhorn divergences, which are affordable yet positive and
+definite approximations of Optimal Transport (Wasserstein) distances.
+@end itemize")
+ (license license:expat)))
+
(define-public python-hmmlearn
(package
(name "python-hmmlearn")