diff options
author | Ricardo Wurmus <rekado@elephly.net> | 2025-01-22 15:26:57 +0100 |
---|---|---|
committer | Ricardo Wurmus <rekado@elephly.net> | 2025-01-22 15:28:25 +0100 |
commit | f8e9462982341d6a67af79b5d99e3163a8b11ce1 (patch) | |
tree | ceae8429f99da9a7ed1054ec2a0f50aabf4930ff /gnu/packages/machine-learning.scm | |
parent | d53a56f7c75725c13c4470a93ecae65f3231d9ec (diff) |
gnu: Add python-geomloss.
* gnu/packages/machine-learning.scm (python-geomloss): New variable.
Change-Id: Id54d81c8c942c69151a7667983073a28419170d0
Diffstat (limited to 'gnu/packages/machine-learning.scm')
-rw-r--r-- | gnu/packages/machine-learning.scm | 31 |
1 files changed, 31 insertions, 0 deletions
diff --git a/gnu/packages/machine-learning.scm b/gnu/packages/machine-learning.scm index cd39b34d83..cc7b746979 100644 --- a/gnu/packages/machine-learning.scm +++ b/gnu/packages/machine-learning.scm @@ -5530,6 +5530,37 @@ and common image transformations for computer vision.") Python.") (license license:bsd-3))) +(define-public python-geomloss + (package + (name "python-geomloss") + (version "0.2.6") + (source + (origin + (method url-fetch) + (uri (pypi-uri "geomloss" version)) + (sha256 + (base32 "1szsjpcwjlvqiiws120fwn581a6hs8gm9si8c75v40ahbh44f729")))) + (build-system pyproject-build-system) + ;; There are no automated tests. + (arguments (list #:tests? #false)) + (propagated-inputs (list python-numpy python-pytorch)) + (native-inputs (list python-setuptools python-wheel)) + (home-page "https://www.kernel-operations.io/geomloss/") + (synopsis + "Geometric loss functions between point clouds, images and volumes") + (description + "The GeomLoss library provides efficient GPU implementations for: + +@itemize +@item Kernel norms (also known as Maximum Mean Discrepancies). +@item Hausdorff divergences, which are positive definite generalizations of +the Chamfer-ICP loss and are analogous to log-likelihoods of Gaussian Mixture +Models. +@item Debiased Sinkhorn divergences, which are affordable yet positive and +definite approximations of Optimal Transport (Wasserstein) distances. +@end itemize") + (license license:expat))) + (define-public python-hmmlearn (package (name "python-hmmlearn") |